Behavioral Intention Of Young Consumers Towards The Acceptance Of Social Media Marketing in Emerging Markets
 
More details
Hide details
1
Ph.D., Dalat University, The Faculty of Economics & Business Administration, Lamdong, Vietnam
 
 
Online publication date: 2020-12-31
 
 
Management 2020;24(2):69-93
 
KEYWORDS
JEL CLASSIFICATION CODES
M10
M3
M31
 
ABSTRACT
The study identifies the factors that influence marketing through social media of users in the Vietnam market, conducted through qualitative and quantitative methods. The research results show that Intention to use social media marketing is directly affected by Attitude towards advertisement and Attitude to electronic words of mouth. Additionally, perceived usefulness, Search Level and Perceived risk are factors that directly affect Attitude towards advertisement. Whereas, material condition and perceived usefulness are factors that affect Attitudes towards electronic words of mouth. This study also provides some implications for marketers through social networks to increase the confidence and effectiveness of marketing campaigns and programs through this channel.
REFERENCES (28)
1.
Agrawal, S., Kaur N. (2015). Influence of Social Media Marketing in Indian Pharmaceutical Industry, Int. J. Adv. Res. Innov., Vol. 3, No. 4, pp. 735–738. Al Qeisi, K. I., Al-Abdallah, G. M. (2014). Website Design and Usage.
 
2.
Behaviour: An Application of the UTAUT Model for Internet Banking in UK, Int. J. Mark. Stud., Vol. 6, No. 1, pp. 75–89.
 
3.
Balaid, A., Yaslam Almatari, A., Iahad, N. (2013). Factors influencing students’ intention to use mlearning, Vol. 5.
 
4.
Bansal, E. (2015). Social Media Marketing: - Prerequisites For The Effective Content Success, Int. J. Sci. Res. Educ., Vol. 3, No. 7, pp. 3914–3921.
 
5.
Carlsson, C., Carlsson, J., Hyvönen, K., Puhakainen, J., Walden, P. (2006). Adoption of mobile devices/services - Searching for answers with the UTAUT, Proc. Annu. Hawaii Int. Conf. Syst. Sci., Vol. 6, No. C, pp. 1–10.
 
6.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Q., Vol. 13, No. 3, pp. 319–340.
 
7.
Gardner, C., Amoroso, D. L. (2004). Development of an instrument to measure the acceptance of Internet technology by consumers, 37th Annu. Hawaii Int. Conf. Syst. Sci. 2004. Proc., January 2004, p. 10.
 
8.
Gentry, L., Calantone, R. (2002) A comparison of three models to explain shop-bot use on the web, Psychol. Mark., Vol. 19, No. 11, pp. 945–956.
 
9.
Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel E. (2010). Social media recommendation based on people and tags, Proceeding 33rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. - SIGIR ’10, no. Lc, p. 194.
 
10.
Knutsen, L. A. (2005) M-service expectancies and attitudes: Linkages and effects of first impressions, Proc. Annu. Hawaii Int. Conf. Syst. Sci., Vol. 00, No. 2054, p. 84.
 
11.
Lee, Y., Kozar, K. A., Larsen, K. R. T., Lee, Y., Kozar, K. A., Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future, Commun. Assoc. Inf. Syst., Vol. 12, No. 50, pp. 752–780.
 
12.
Lim, N. (2003). Consumers’ perceived risk: Sources versus consequences, Electron. Commer. Res. Appl., Vol. 2, No. 3, pp. 216–228.
 
13.
Longart, P. (2010). What drives word-of-mouth in restaurants?, vol. 22.
 
14.
Luo, X., Zhang, J., Duan, W. (2013). Social media and firm equity value, Inf. Syst. Res., Vol. 24, No. 1, pp. 146–163.
 
15.
Mangold, W. G., Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix, Bus. Horiz., Vol. 52, No. 4, pp. 357–365.
 
16.
Martins, C., Oliveira, T., Popovič, A. (2014). Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application, Int. J. Inf. Manage., vol. 34, no. 1, pp. 1–13, 2014.
 
17.
Neti, M. S. (2011). SOCIAL MEDIA AND ITS ROLE IN MARKETING, Int. J. Enterp. Comput. Bus. Syst., Vol. 1, No. 2, p. 16.
 
18.
O’Cas,s A., Fenech, T.(2003). Web Retailing Adoption: Exploring the Nature of Internet Users Web Retailing Behaviour, Vol. 10.
 
19.
Pan, J., Vorvoreanu, M., Zhou, Z. (2014). Social media adoption in disaster restoration industry, Constr. Innov., Vol. 14, No. 3, pp. 346–369.
 
20.
Parra-López, E., Bulchand-Gidumal, J., Gutiérrez-Taño, D., Díaz-Armas, R. (2011). Intentions to use social media in organizing and taking vacation trips, Comput. Human Behav., Vol. 27, No. 2, pp. 640–654.
 
21.
Petty, R. E., Cacioppo, J. T., Goldman, R. (1981). Personal involvement as a determinant of argument-based persuasion., J. Pers. Soc. Psychol., Vol. 41, No. 5, pp. 847–855.
 
22.
Romero, D. M., Galuba, W., Asur, S., Huberman, B. A. (2011). Influence and Passivity in Social Media.
 
23.
Rouse, M., What is social media?, techtarget.com. [Online]. Available: https://whatis.techtarget.com/.... (Accessed: 15-Apr-2018).
 
24.
Sundaravej, T. (2010). Empirical Validation of Unified Theory of Acceptance and Use of Technology Model, Vol. 13.
 
25.
Thackeray, R., Neiger, B. L., Hanson, C. L., Mckenzie, J. F. (2008). Enhancing Promotional Strategies Within Social Marketing Programs: Use of Web 2.0 Social Media, Health Promot. Pract., Vol. 9, No. 4, pp. 338–343.
 
26.
Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View, Source MIS Q., Vol. 27, No. 3, pp. 425–478.
 
27.
Venkatesh, V., Sykes, T. A., Zhang, X. (2011). Just what the doctor ordered’: A revised UTAUT for EMR system adoption and use by doctors,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., pp. 1–10.
 
28.
Vinerean, S., Cetina, I., Dumitrescu, L., Tichindelean, M. (2013) The Effects of Social Media Marketing on Online Consumer Behavior, Int. J. Bus. Manag., Vol. 8, No. 14, pp. 66–79.
 
eISSN:2299-193X
ISSN:1429-9321 (1997-2019)
Journals System - logo
Scroll to top