Human development level as a modifier of education efficiency
 
 
 
More details
Hide details
1
Ph.D., Eng. Stanisław Staszic University of Applied Sciences in Piła Poland
 
 
Online publication date: 2018-12-19
 
 
Management 2018;22(2):171-186
 
KEYWORDS
JEL CLASSIFICATION CODES
H19
H40
I21
I22
 
ABSTRACT
The aim of the study was to demonstrate the connection between education efficiency level and human development level. It was assumed that there is a connection between the value of Local Human Development Index (LHDI) and education efficiency established by means of the data envelopment analysis (DEA). The analysis covered data regarding 60 counties, recorded in 2013-2015. 30 counties with the highest Local Human Development Index (LHDI) and 30 counties with the lowest LHDI value were selected. The counties were selected based on a 2010 ranking of counties ordered according to LHDI values, published as a part of the National Report on Human Development. An additional analysis was conducted to evaluate the connection between Education Efficiency Index and the Wealth Index, Health Index and Education Index. The data on the counties used for the analyses was obtained from the Local Data Bank kept by the Main Statistical Office of Poland (GUS) and the Education Research Institute (IBE) of the Ministry of National Education. The efficiency analysis based on DEA-CRS was conducted with DEAFrontier software. The final stage of the analyses involved an ANOVA unidimensional analysis of variance for multiple factors, with emphasis on contrast analysis (simple contrast). The quality predictor applied in those analyses was the class of Efficiency Index. The analyses demonstrate that the highest Education Efficiency Index has been recorded in the counties that have the highest values of analysed variables characteristic of the largest counties. The identified dependency is also associated with the highest value of Local Human Development Index and the measures that make up LHDI.
 
REFERENCES (19)
1.
Arak P., Ivanov A., Peleah M., Płoszaj A., Rakocy K., Rok J., Wyszkowski K. (2012), Krajowy Raport o Rozwoju Społecznym Polska 2012. Rozwój regionalny i lokalny, Warszawa: Biuro Projektowe UNDP w Polsce.
 
2.
Babcock P., Betts J. R. (2009), Reduced-class distinctions: Effort, ability, and the education production function, “Journal of Urban Economics”, No 65, pp. 314-322, DOI: 10.1016/j.jue.2009.02.001.
 
3.
Badr M., Morrissey O., Appleton S. (2003), Determinants of Educational Attainment in MENA, “Credit Research Paper”, No. 12, pp. 1-38.
 
4.
Barro R., Lee J. W. (2001), Schooling Quality in a Cross-Section of Countries, “Economica”, Vol. 68, No. 272, pp. 465-488, DOI: 10.1111/1468-0335.d01-12.
 
5.
Battese G. E., Coelli T. J. (1995), A Model for technical inefficiency effects in a stochastic frontier production for panel data, “Empirical Economics”, No. 24, pp. 325-332, DOI: 10.1007/BF01205442.
 
6.
Bourdieu P., Passeron J. C. (2006), Reprodukcja. Elementy teorii systemu nauczania, Wydawnictwo Naukowe PWN.
 
7.
Czyżewski B., Brelik A. (2016), Modelowanie społeczno-ekonomicznych determinant jakości edukacji, “Zeszyty Naukowe WSES w Ostrołęce”, No. 20, pp. 93-104.
 
8.
Glewwe P. (2002), Schools and Skils in Developing Countries: Education Policies and Socioecnomic Outcomes, “Journal of Economic Literature”, No. 40, pp.436-482.
 
9.
Glewwe P., Kremer M. (2005), Schools, Teachers, and Education Outcomes in Developing Countries, Harvard, Working Papers Center for International Development at Harvard University.
 
10.
Jabłoński Ł. (2011), Kapitał ludzki w wybranych modelach wzrostu gospodarczego, “Gospodarka Narodowa”, No. 1-2, pp. 81-103.
 
11.
Jakubowski M. (2007), Metody szacowania edukacyjnej wartości dodanej, [in:] Dolata R. (ed.), Edukacyjna wartość dodana jako metoda oceny efektywności nauczania, Warszawa: Centralna Komisja Egzaminacyjna.
 
12.
Klump R., Cabrera C. A. M. (2007), Education and Pro-Poor Growth, Frankfurt am Main, KfW Bankengruppe, Group communications.
 
13.
Krueger A. B. (2003), Economic considerations nad class size, “Economic Journal”, No. 113, pp. 34-63.
 
14.
Smith A. (1998), An Inquiry into the Nature and Causes of the Wealth of Nations, Washington, D.C.: Regnery.
 
15.
Stanisz A. (2007), Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, Kraków, StatSoft Polska.
 
16.
Turczak A. (2012), Inwestowanie w badania i rozwój istotnym czynnikiem wzrostu Produktu Krajowego Brutto (pp. 113-132), [in:] Kunasz M. (eds.), Wybrane aspekty kształtowania kapitału ludzkiego w organizacji i społeczeństwie, Szczecin: Wydział Nauk Ekonomicznych i Zarządzania Uniwersytetu Szczecińskiego.
 
17.
Turczak A., Zwiech P. (2014), Variability of household disposable income per capita by types of residence in Poland, “STATISTICS IN TRANSITION new series”, Vol. 15, No. 4, pp. 573-590.
 
18.
Walukiewicz S. (2009), Kapitał ludzki i społeczny jako przedmiot badań pedagogicznych, [in:] Niemierko B., Szmigiel M. K. (eds.), Badania międzynarodowe i wzory zagraniczne w diagnostyce edukacyjnej, Kielce: Polskie Towarzystwo Diagnostyki Edukacyjnej.
 
19.
Woessmann L. (2005), Educational production in Europe, “Economic Policy”, No. 20, pp. 445-504, DOI: 10.1111/j.1468-0327.2005.00144.x.
 
eISSN:2299-193X
ISSN:1429-9321 (1997-2019)
Journals System - logo
Scroll to top